

P. O. BOX 5337 BOSSIER CITY, LOUISIANA 71171-5337

May 07, 2024

To:

Citizens of Bossier City

Subject:

The Water We Drink: Bossier City Water Treatment Plant

Public Water Supply ID. 1015004

Annual Water Quality Report - Year 2023

We are pleased to present to you the Annual Water Quality Report for the year 2023. Our water system received a grade of "A / 100%" from the Louisiana Department of Health. Our water system report card can be found at www.ldh.la.gov/watergrade.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply, we sometimes need to make improvements that will benefit all of our customers. We work around the clock to provide top quality drinking water to every tap. We also ask that all of our customers help us protect and conserve our water sources, which are the heart of our community, our way of life, and our children's future. This report is designed to inform you about the quality of your water and the services we deliver to you every day (Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien). Our water sources(s) are listed in the table below:

Source Name	Source Water Type	Source Water Body Name
Red River Surface Water Intake	Surface Water	Red River
Raw Water Storage Reservoir	Surfa	ce Water

Our constant goal is to provide you with a safe and dependable supply of drinking water, improve the water treatment process and protect our natural water resources. The U.S. Environmental Protection Agency (USEPA) has determined that water samples taken by the State Department of Health, during the 2023 calendar year, indicate that we meet or exceed all Federal and State Regulations for drinking water standards. Our drinking water is safe. **There were no contaminants detected above their action levels during the 2023 monitoring cycle.** Please note that all drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Bossier City Water System is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

The Maximum Contamination Level (MCL), as shown in the enclosed tables, is set at very stringent levels. To understand the possible health effects described, a person would have to drink 2 liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the number of certain contaminants in water provided by public water systems. In addition, the Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Although all Halo acetic acid (HAA5) levels detected within our water system were well below the established MCL for this disinfection byproduct, some people who drink water containing HAA5s in excess of the MCL over many years may have an increased risk of getting cancer. Additionally, even though all trihalomethanes (THM) levels within our water system were also well below the established MCL for this constituent, certain people who drink water containing THMs in excess of the associated MCL over many years may experience problems within their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

A Source Water Assessment Plan (SWAP) is available from our office. This plan is an assessment of a delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the Source Water Assessment Plan, our water system had a susceptibility rating of "HIGH". As such, the City of Bossier Water System includes system redundancies, including a 700-million-gallon reservoir to protect against this risk. If you would like to review the Source Water Assessment Plan, please feel free to contact our office. We ask that all our citizens help us protect our water resources to ensure that we continue to have an adequate, reliable and safe water supply in years to come.

As a reminder, after hours emergency water or wastewater repairs can be reported by calling (318) 741-8466.

Sincerely,

Hon. Thomas H. Chandler Mayor, City of Bossier City

Attachments (2)
Definitions/Tables

DEFINITIONS FOR TABLES

Action Level (AL) - Detection of a constituent in drinking water which concentration equals or exceeds 50% of the HA, MCL, or SMCL and indicates need for further action such as increased monitoring.

Parts per million (ppm) or Milligrams per liter (mg/L) – One part per million corresponds to one minute in two years or a single penny in \$10.000.

Parts per billion (ppb) or Micrograms per liter (ug/L) – One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (*pCi/L*) –Picocuries per liter is a measure of the radioactivity in water.

Nephelometric Turbidity Unit (NTU) and/or (Turbidity) — Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person. It is a good indicator of the effectiveness of drinking water filtration systems. Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth.

Treatment Technique (TT) – An enforceable procedure or level of technological performance which public water systems must follow to ensure control of a contaminant.

Coliform - Bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present.

Chloramines - Disinfectants used to treat drinking water. They are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers. The Centers for Disease Control and Prevention denote that current studies indicate that using or drinking water with small amounts of chloramine does not cause harmful health effects and provides protection against waterborne disease outbreaks. These studies reported no observed health effects from drinking water with chloramine levels of less than 50 ppm in drinking water.

Fecal Coliform and E Coli- Bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes can cause short term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, some elderly and people with severely compromised immune systems.

Maximum residual disinfectant level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Action Level (AL) – The concentration of a contaminant that, if exceeded, triggers treatment process or other requirements that a water system must follow.

Maximum contamination level (MCL) – The "Maximum Allowed" MCL is the highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum contaminant level goal (MCLG) – The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to human health. MCLG's allow for a margin of safety.

Maximum residual disinfectant level goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Level 1 assessment – A study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment – A very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Standard Unit (SU) & pH - pH is measured on logarithmic scale, ranging from 0 to 14 SU, with 7 SU being a neutral ph.

Fluoride – A compound containing fluorine and another element or radical. It is typically added in drinking water supplies to promote healthy teeth.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial Contaminants - such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic Contaminants - such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides - which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic Chemical Contaminants – including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

Radioactive Contaminants – which can be naturally-occurring or be the result of oil and gas production and mining activities.

The following tables show the results of all monitoring during the period of January 1st to December 31st, 2023.

Compliance Period	Analyte	Туре
No Viola	tions Occurred in the Calen	dar Year of 2023.

The Louisiana Department of Health - Office of Public Health routinely monitors, samples and tests for constituents in your drinking water according to Federal and State laws. Our water system personal work in coalition with our State Regulatory Agency to ensure that a minimum of 80 water samples per month are analyzed accordance with the Total Coliform Rule for microbiological contaminants. Our water system personnel also collect disinfectant residuals at the Water Plant and throughout the City's water distribution system to ensure prevention and control of microbial growth.

Disinfectant	Period	Highest RAA	Unit	Range	MRDL or MCL	MRDLG or MCLG	Typical Source
Chloramine	2023	2.9	ppm	1.0 - 5.0	4	4	Disinfectant used to control microbes.

^{*}The values in the "Result" column represent the highest running annual arithmetic average, computed quarterly, of monthly samples. Some people who drink water containing bromate in excess of the MCL over many years may have an increased risk of getting cancer.

In the tables below, we have shown the regulated contaminants that were detected during the monitoring period beginning January 1, 2023 through December 31, 2023 or from the latest historical period in which the contaminate sampling data was available. All contaminants were **BELOW** their associated maximum contaminant levels. Numerous samples are collected from our raw water source, the treatment plant and the distribution system. As such, some results could be lower at the consumer tap.

Regulated Contaminants	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical Sources
Fluoride	01/29/2023	0.6	0.6	ppm	4	4	Ordinary erosion of natural deposits and discharge from fertilizer and aluminum factories.
Nitrate-Nitrite	01/29/2023	0.3	03	ppm	10	10	Runoff from fertilizer use; Leaching from septic tanks; Erosion of natural deposits.
Atrazine	08/14/2023	0.04	0.021 - 0.04	ppb	3	3	Runoff from herbicide used on row crops
Picloram	01/29/2023	0.05	0- 0.05	ppb	500	500	Herbicide Runoff.

Radionuclides	Collection Date	Highest Value	Range	Unit	MCL	MCLG	Typical Sources
Gross Beta Particle Activity	1/29/2023	2.54	2.54	pCi/l	50	0	Decay of natural and man made deposits. Note: The gross beta particle activity MCL is 4 millirems/yea annual doe equivalent to the total body or any interna organ. 50 pCi/L is used as a screening level.

Lead and Copper	Date	90 th Percentile	Range	Unit	AL	Sites > AL	Typical Source
Copper, Free	2020 - 2022	0.6	0 – 0.9	ppm	1.3	0	Corrosion of household piping; Erosion of natural deposits. Leaching from wood preservatives.
Lead	2019 -2022	0	1 - 3	ppb	15	0	Corrosion of household plumbing systems; Erosion of natural deposits

^{*}The 90th percentiles for copper and lead cannot exceed 1.3 ppm and 15 ppb, respectively.

Disinfection/ By-products	Sample Point	Period	Highest LRAA	Range	Unit	MCL	MCLG	Typical Source
Total Haloacetic Acids (HAA5)	1401 Hamilton	2023	9	9 – 20	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	N Willow @ Airline	2023	15	12 – 21	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	2007 Wakefield	2023	15	11 – 23	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	3009 Donald	2023	12	11 – 24	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	2200 Landau	2023	11	7 – 23	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	Hwy 80 @ SWEPCO Pole #79	2023	13	10 – 21	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	2223 Kirby Smith	2023	14	9 – 23	ppb	60	0	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA5)	Barksdale @ RR WWTP	2023	13	1 – 22	ppb	60	0	By-product of drinking water disinfection.
TTHM	1401 Hamilton	2023	15	11 – 20	ppb	80	0	By-product of drinking water chlorination.
TTHM	N Willow @ Airline	2023	18	16 – 21	ppb	80	0	By-product of drinking water chlorination.
TTHM	2007 Wakefield	2023	18	14 – 24	ppb	80	0	By-product of drinking water chlorination.
TTHM	3009 Donald	2023	19	14 – 24	ppb	80	0	By-product of drinking water chlorination.
TTHM	2200 Landau	2023	19	17 – 23	ppb	80	0	By-product of drinking water chlorination.
TTHM	Hwy 80 @ SWEPCO Pole #79	2023	19	16 – 20	ppb	80	0	By-product of drinking water chlorination.
TTHM	2223 Kirby Smith	2023	18	17 – 23	ppb	80	0	By-product of drinking water chlorination.
TTHM	Barksdale @ RR WWTP	2023	18	18 – 22	ppb	80	0	By-product of drinking water chlorination.

^{*}The values in the "Highest LRRA" column represent the highest locational running annual average

Secondary Contaminants	Collection Date	Highest Value	Range	Unit	SMCL
Chloride	01/29/2023	35	35	MG/L	250
Aluminum	08/04/2023	0.05	0.05	MG/L	0.2
рН	01/29/2023	6.01	6.01	рН	8.5
Manganese	08/14/2023	0.02	0-0.02	MG/L	0.05
Iron	08/24/2023	0.02	0.01 - 0.02	MG/L	0.3
Sulfate	01/29/2023	36	36	MG/L	250

All of the contaminants listed in the tables below are currently unregulated. These contaminants are those that do not currently have a drinking water standard set for them by the United States Environmental Protection Agency (USEPA). The purpose of our water system monitoring for these contaminants was to help the USEPA decide whether the contaminants should eventually have a set standard. All of the samples listed below were collected from one or more of Bossier City's State-

approved drinking water distribution sample sites.

Unregulated Contaminants	Collection Date	Average Concentration	Range	Unit
Lithium	2023	4.8	0-14.4	ppb
Perfluorobutanesulfonic acid	2023	0.001717	0.00089 - 0.0034	ug/L
Perfluorodecanoic acid	2023	0.001717	0.00089 - 0.0034	ug/L
Perfluorohexanoic acid	2023	0.001717	0.00089 - 0.0034	ug/L
Perfluorododecanoic acid	2023	0.001717	0.00089 - 0.0034	ug/L
Perfluoroheptanoic acid	2023	0.001717	0.00089 - 0.0034	ug/L
Perfluorohexanesulfonic acid	2023	0.001717	0.00089 - 0.0034	ug/L
Perfluorononanoic acid	2023	0.00115	0.0011-0.0012	ug/L
Perfluorooctanesulfonic acid	2023	0.00115	0.0011-0.0012	ug/L
Perfluorooctanoic acid	2023	0.00115	0.0011-0.0012	ug/L
Perfluoroundecanoic acid	2023	0.001527	0.00060 - 0.0034	ug/L
NEtFOSAA	2023	0.0024	0.0014 - 0.0053	ug/L
NMeFOSAA	2023	0.0029	0.0017 - 0.0064	ug/L
Perfluorotetradecanoic acid	2023	0.003475	0.0023 - 0.0086	ug/L
Perfluorotridecanoic acid	2023	0.0034	0.0020 - 0.0075	ug/L
PFBA	2023	0.003167	0.0015 - 0.0057	ug/L
PFEESA	2023	0.001717	0.00086 - 0.0034	ug/L
PFHpS	2023	0.001717	0.00086 - 0.0034	ug/L
PFMBA	2023	0.001717	0.00086 - 0.0034	ug/L
PFMPA	2023	0.002267	0.0011 - 0.0045	ug/L
PFPeA	2023	0.001717	0.00086 - 0.0034	ug/L
PFPeS	2023	0.002267	0.0011 - 0.0045	ug/L